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I. I N  T R 0 DV C TI 0 N 

This is the final report for Nasa grant S A G  5-778 entitled “Error Control Coding for 

Satellite and Space Conimunications”. In this report we describe in detail the new results 

obtained since the last submitted report in March of 1987 but only briefly describe the 

results obt.ained previously. The sumniary of previous results is given in section I11 in 

t.ernis of reports and preprints of submitted papers. 

The overall research goals for this grant have been attained. In the latter part of the 

research which started in January ‘ 8 i  when I took over from Professor Shu Lin, I have 

mainly concentrated on problems encoutered in optical communication systems for satellite 

and space conimunications. Here. some interesting results have been obtained. but more 

research is needed in the future on the topic. 
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11. NEW RESTTLTS 

This section contains a detailed description of the technical results obtained since the 

last technical report was submitted to KASA on 3Iarch 25. These results are reported 

in the form of a paper which has recently been suhriiitted for publication in t.he IEEE 

transactions 011 communications. 
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SOME IMPLICATIONS OF TCM FOR OPTICAL 

DIRECT-DETECTION CHANNELS * 

by 

Cost as Tu'. Georghiades 

Electrical Engineering Department 

Texas ALL1 Vniversity 

College Station, Texas 77843 

ABSTRACT 

We consider the optical direct detection channel and show how simple trellis coded 

modulation (TCM) can be used to improve performance or increase throughput (in bits 

per second) without a bandwidth expansion and no performance loss. In fact, a modest 

performance gain can be achieved. Although the approach can be used with other sig- 

nal const,ellations. we concent rat e on signals derived from the pulse-position modulation 

(PPM) format by allowing overlap. Theoretical motivation for using this signal set, known 

as overlapping PPM (OPPM). was recently given by Bar David et a1 who showed a capacity 

gain when overlap is i r i t  roduced. 

~~~ 

* This research was supported by NASA grant No. N A G  5 - 7 7 8  
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I. INTRODUCTION 

Increasing system throughput (bits per second) in general involves either decreasing 

the symbol duration or increasing the number of signals in the signal space. The first 

approach results in an unavoidable increase in the required system bandwidth since the 

same number of signal dimensions must fit in a smaller time interval. The second approach 

may or may not result in a bandwidth expansion depending on whether the dimensionality 

of the signal space is increased or not. In the latter case, the incurred penalty is an increase 

in error-probabilit y since signals are now closer toget her. Applying conventional coding to 

improve performance will result in an increase in the required bandwidth which may not 

be available. 

In this paper, we apply the ideas introduced by Vngerboeck [l] in order to  increase 

throughput at no penalty in either bandwidth expansion or performance degradation. 

Specifically, we are interested in doubling the throughput at no cost in bandwidth or 

performance. The approach we follow is to introduce enough new signals in the signal 

space to triple the number of bits per symbol, while keeping the dimensionality of the signal 

space the same to avoid bandwidth expansion. N'e then sacrifice some of the throughput 

gain using a trellis code over the expanded signal set in order t o  improve performance. We 

do this for the optical direct-detection channel and consider both the background noise 

case as well as the quantum-limited case where the only noise is the self-noise of the signal. 

The direct-detection optical channel is well modeled by Poisson statistics, under which the 

output of the channel is a Poisson process w i t h  intensity ( A , ( t )  + A n ) .  Here, A,(t) is the 

mean rate in photons per second due to the signal impinging on the phot>odetector and A, 

is the noise intensity, due to background andior detector dark currents; A, is zero for the 

qu an t um -1imi t ed channel. 

111 the analysis that  follows we consider overlapping pulse-position niodulation (OPPM) 

signals which, as the name implies. allow overlap between pulse positions. in contrast t o  

the usual orthogonal PPM. The motivation for using this signal format is given by Bar 

David et a1 [a] who showed that the capacity of the optical channel increases conipared 

to orthogonal PPM when overlap is allowed. Moreover. it was noted in !2! that most of 



the capacity gain can be achieved with a small overlap for low signal levels, as measured 

by the average number of photons per slot. Another advantage of OPPM is that, like 

PPM, it involves equal energy signals and has a low duty-cycle. The latter consideration 

is important due to the average power limit imposed on optical communication systems 

by the laser and is one of the reasons PPM is preferred over on-off keying (OOK). A more 

detailed description of OPPhl  is given in the following. 

In section I1 we derive uncoded error-probability expressions for OPPM for both the 

quantum-limited as well as the background noise case. Section 111 contains examples of how 

TCM can be applied to the optical channel to increase throughput or improve performance 

and analysis of the coded error-probability. Finally section IV contains some conclusions. 

11. OVERLAPPING PPM 

A. The Model 

Under OPPhl  a symbol interval of T seconds is subdivided into Q N  subintervals of 

equal duration T seconds. Information is conveyed by the position of a pulse of duration 

T’ = X T  seconds in one of the first J times t k  = ( I C  - 1 ) ~ .  k = 1: 2, ..., J ;  here tl = 0 is 

the start of a symbol interval. It is clear that J is related to Q and -V by 

As an example. figure 1 shows pictorially the J = 4 OPPhl signals corresponding to  Q = 2 

and N = 3. Following the terminology in [2], we will refer to N as the indez of overlap. 

Notice that Q is the alphabet size of the PPhl signal set with no overlap ( N  = 1) and 

that by allowing overlap between pulses we have increased the number of signals from Q 

to J .  The bandwidth of the OPPM signal set can be easily seen to be the same as that 

for Q-ary PPM since the signal pulse duration and the number of dimensions (Q)  are the 

same in both cases. On the other hand. however. the extended signal set is not orthogonal 

anymore. which implies worse performance. Moreover. an increased burden is put on the 

synchronization system which must now provide better time resolution. In the analysis 

that follows we will assume that synchronization is either perfectly achieved or achieved 

to such a degree that its effects on performance are negligible. 



-4s a demonstration of the throughput advantages of OPPM compared to  orthogonal 

PPM let us find the maximum throughput achieved by each when a bandwidth limit BL is 

imposed on a system. Measuring bandwidth by the reciprocal of the signal pulse duration, 

it is easily found for PPM that the throughput r in nats per second is bounded by 

For OPPM we have 

ln[N(Q - 1)  + 11 BL < -ln(iV + 1). Q - 2  T 5 BL ( 3 )  

Equality on the right-most inequalities in (2)  and (3)  is achieved when Q = 2, which 

implies that when throughput is a prime considerat,ion, there is an advantage in limiting 

the PPM alphabet size to Q = 2. A simple comparison between (2)  and ( 3 )  shows the 

throughput advantage of OPPM over PPM. 

The uncoded error-probability performance of a Q = 4 OPPM system was previously 

studied in [3] for a suboptimal receiver that implementfed threshold detection to  make 

symbol decisions. The authors in [3] noted that the increased throughput was obtained at 

a large cost in performance. In this paper we derive similar results for the performance of 

optimal receivers and show with specific examples, using trellis coded modulation (TCM) 

with simple codes. that performance loss can be avoided even when throughput is doubled 

with no bandwidth increase. Before we proceed further, we note that our results are 

not meant to compete with those reported by McEliece [4] and Massey [ 5 ]  in terms of 

error-probability. Such a comparison will be unfair since their coding schemes exploit an 

appreciable bandwidth expansion in order to increase coniniunicat ion efficiency in bits per 

phot on. 

B. Vncoded Error- Probabili ty 

1-nder the Poisson channel assumption. the sufficient s i  atistic can be easily derived to 

be the number of photons Nk.  k = 1,2. .... J .  observed in each of the J subintervals corre- 

sponding to pulse-positions. These counts are Poisson distributed with mean ( A ,  + A,)T' 



when a signal pulse is present. and A,T’ otherwise. The receiver makes a decision by choos- 

ing t,he symbol interval with the largest. number of counts. In case of symbols with equal 

counts. a random choice is made among those symbols. 

FVe first concentrate on the quantum-liiiiited case, A, = 0. In this case it  can be easily 

seen that the sufficient statistic simplifies to the binary vector x = ( ~ 1 . ~ 2 ,  .... X , V Q )  where 

1, if n, > 0; 
0. otherwise; 

s, = 

here, n , ,  i = 1 ,2 ,  . . N Q ,  is the number of counts in t,he i-th 7-second subinterval dividing 

T. With no background noise, the channel becomes an erasure channel (not binary) with 

an erasure probability in each pulsed 7-second interval equal to 

e = exp(-A,T). ( 3 )  

. This means that P r : z t  = 01 equals E when a signal pulse is present in the i - t h  7-second 

subinterval and it. equals one otherwise. 

Leaving the details of t,he derivations for appendix A ,  the uncoded error-probability 

can be shown t,o be 

where 

P2 = ( I  
N EN 

J N (6 )  
€k 

N-1 

€ ) 2  + (1 - € ) ( a  - € )  - - T -(1 - E ) .  

k= 1 

Defining by p the number of signal photons per i n f o r m d o n  nat. we have A,T’ = p R l n ( J )  

phot,ons per channel use (cu)  where R is the number of inforniation symbols per channel 

symbol. Remembering that 2’’ = hr7, we have for uncoded systems 

CI 
LY 

= exp(-- l n ( J ) ) .  

A brief check indicates that equation (4) reduces to the right equation for t,he Q-ary PPM 

case when A’ = 1. 



When background noise is present, the following bound on error-probability is derived 

in appendix B for uncoded systems. 

where Ql(  , ) is hlarcum’s Q funct.ion [9), 

2 ( J  - ? ) .  i = 1,2,....(X - 1);  
( J  - N ) ( J  - lv i l ) ,  2 = N ,  a ( ; )  = 

and 

(9)  

Notice t.hat, as A, --+ 0, y 4 A,T and (8)  becomes a bound to the exact error- 

probability in (4)-(6). Although the second sum on the right-hand side of (8 )  can be 

summed analytically, we did not do so because it provides no further insight. 

Figures (2) and (3 )  show for the quantum-limited case the symbol error-probability 

as a function of signal energy p in photons/nat, the index of overlap N and the PPM 

alphabet size Q. Similar results for the background noise case with one noise photon per 

slot. A,T’ = 1, are shown in figures (4) and ( 5 ) .  These results were obtained by using the 

bound with the Q-function in equation (8)  which is tighter than the Chernoff bound. It 

was found that the Chernoff bound in (8) is about 0.5 dB away from the results presented 

in figures 3 and 4. 

The significant degradation in performance with increasing overlap N is obvious from 

the figures. As an example, for quantum-limited channels with Q = 2 and an error- 

probability of l o v 6  there is about 1.8, 3.0. and 3.8 dB degradation in going from N = 1 to 

-7- = 3, 5 ,  and 7 respectively. The corespondirig losses from overlap for Q = 4 are 2.8, 4.0, 

and 5.1 dB respectively, indicating a higher loss with overlap as Q is increased. Similar 

results for the background noise case are 1 . 2 ,  2.2 and 2.9 dB loss for Q = 2 and 1.7, 2.9 and 

3.8 for Q = 4. These losses are significantly less than those reported in [3] for a suboptimal 

receiver. The gain in allowing overlap is of course an increase in throughput by a factor 

p = ln( J )  Ij In( Q )  as compared to  conventional Q-ary PPM. The index of overlap needed 
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to achieve a p-fold increase in throughput is N = ( Q P  - I ) / ( Q  - l ) ,  which increases 

exponentially with p .  Also clear from figures 2-5 is the fact that increasing Q improves 

performance for the same overlap N and signal level p .  The price paid in this case is an 

increased bandwidth since increasing Q increases the nuiiiber of dimensions in the signal 

space. 

A comparison between the performance of the optimal receiver in figures 3 and 5 to  

the perforniance of the suboptimal receiver studied in 1.3) for Q = 4 indicates that the 

latter is significantly inferior, especially for large indexes of overlap N.  For example, for 

the quantum-limited channel and an error-probability of lo-' the suboptimal receiver in 

[3] is about 3 dB inferior for II' = 3 and about 4.5 dB inferior for LV = 4. Similarly, for 

the background noise case the difference between the optimal and suboptimal receivers is 

at least 3.5 dB for A' = 4 and at  least 4 .1  dB for il' = 5 .  

In the next section we will show how the use of trellis-coded modulation can result in 

a doubling in throughput at no performance loss. 

111. SOME IMPLICATIONS OF TCM 

A .  The Distance Metric 

In presenting the results in this section we assume that the reader 

Ungerboeck's work on t rellis-coded modulation [ 11. Tutorial versions of 

to follow can be found in 16 and 171. 

is faniiliar wi th  

li that  are easy 

The first step involved in applying the ideas of TCM to the optical channel is to identify 

a distance metric that  will be used for partitioning the OPPM signal set. To facilitate the 

search for such a metric we will refer to the OPPhl symbol with a pulse starting at time 

t ,  = (1 - 1). as symbol j for j = 1.2. - - . .  J .  This definition is illustrated in figure 1 for 

Q = 2, ,I' = 3 and J = 4. What we are interested in obtaining is a function f(1, k )  between 

symbols j and k such that. given for example that j was sent. the probability of confusing 

j for k is a monotonically non-increasing function of f( j ,  k). j .  k = 1.2. , J .  More 

generally, we need to  show that the probability of choosing a given incorrect pafh in the 

trellis is a monotonically non-increasing function of the dist axice between the incorrect and 
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correct paths. In the next few lines we first. find a metric that satisfies our requirements 

between symbols and then show that it is valid between pat,hs as well. 

A function satisfying our requireiiients bet,ween symbols can be easily identified by 

recalling equation (7B)  in appendix B which represents a Chernoff bound t.o the above 

nientioned probability, i.e., 

(11) 
6 j k  P T [ , V ~  5 iYk/j] 5 exp[--( v’X,T’ + pRln(  J )  - , /X,T’)2] 
N 

where 

We remind the reader that NJ and Nk are the number of counts observed in the j - th  and 

k - t h  syriibol subintervals respectively. Notice that the probability of deciding IC when 

j was sent on the left-hand side of (11) is monotonically non-increasing with h J k  which 

satisfies our condition for a distance metric (notice also that h J k  is indeed a metric). A 

simple proof presented in appendix C shows that the above metric is valid also for paths 

in the trellis as required above. 

As a final point before proceeding, we note that 6,~. can be used to partition the OPPM 

signals in sets with increasing distance but it cannot be used to coiilpare the perforniance 

of OPPM systems with different index of overlap S. X more proper distance measure in 

this case is the whole exponent in equation (11). A simple study of this exponent shows 

that it decreases monotonically with A’ although not quite in an  inverse relation because 

of the dependence of J on N .  In the sequel we will use the above metric in set partitioning 

and in deriving probability of error expressions when coding is used. 

Having idenbified a metric, we are now ready to  show how TCM caii be used for the 

ophical channel to improve perforniance. 

B. Improving Throughput 

Let us consider the problem of doubling the t,hroughput of a binary ( Q  = 2 )  PPM 

system by allowing overlap. This can be accomplished at no bandwidth expansion with an  

overlap K = 3 at the cost, however. of performance. Instead. we use an index of overlap 

10 



N = 7 which results in tripling the throughput and then use a rate 2 /3  t r e k  code on 

the expanded signal set to trade-off some of the throughput gain for performance. As our 

rate 2/3  code we use the simple four-state code described by Ilngerboeck [6] whose trellis 

diagram is repeated in figure 6 for convenience. In order to  partition the signal set in 

subsets with increasing distance, we use the distance metric 6,h discussed above. Figure 7 

shows the results of the set partitioning. 

The minimum free distance of the code is easily seen to be between parallel transitions 

with I ; f r e e  = 4; the number of neighbors at this distance is one. Notice that although we 

are using the same code as in [6], because of the different distance metric and the fact that 

OPPM is not completely symmetric the minimum free distance may be achieved by some 

path other than when phase-shift, keying (PSK) is used with a Euclidean distance metric. 

An example of this will be seen later in this section. 

Approximating the error-probability by the error-event, probability, we have for high 

signal levels and the quant,um limited channel 

1 R In( J)  1 8 In( 8) 
2 PI = g!XPI--PI. N 21 P ( e )  -exp[-6fPee 

Equation ( 1 3 )  expresses the fact that errors can be made only if no counts are detected in 

the four slots of the signal interval that do not overlap with the other symbol in a parallel 

transition. For uncoded binary PPM we have 

1 
2 P( E )  = - expi- ln (2)p , .  (14) 

Comparing (13)  and (14)  we observe a modest 0.6 dB gain with our siniple coding scheme 

obtained, however, at twice the throughput compared to binary PPM. For the background 

noise case with A,?” = 1 we have for the coded case and using the Chernoff bound in 

( 11 ) for comparison 

11 



A brief comparison of equations (15) and (16) shows that even after doubling throughput 

there is, at an error-probability of l o p 6 ,  about a 1.0 dB advantage with the coded system 

as compared to uncoded binary PPhl. Asymptotically as p 4 w, ( P ( e )  -+ 0)  the 

gain reduces to  the same level as for the quantum-limited channel, as expected. Finally, 

the bounds indicate that for any finite number of photons/nat, the gain increases with 

increasing iiurnber of average noise counts. 

Let us now consider the same problem of doubling the throughput using the eight- 

state trellis code that was introduced in [l] for 8-PSK. The trellis for this code is repeated 

in figure 8 which shows the path with the minimum distance from the all one path. Notice 

that whereas for the PSK case [l] there are two paths at the same minimum (Euclidean) 

distance, in our case there is only one and it is at Sf,,, = 5 from the all one path. This 

distance should be compared with the C i f , , ,  = 4 distance for the 4-state code, a gain of 

about 1 dB  over the results reported above. 

C. Improving Performance 

If the objective is to  improve performance without a bandwidth expansion, the exam- 

ples that follow show that this can be accomplished with OPPM for the optical channel 

using the same codes that Vngerboeck derived for the Gaussian channel. 

Let us compare the performance of the coded system with N = 7 ,  Q = 2, given by 

( 1 3 ) ,  to  an uncoded system with L'V = 3 and Q = 2. Both systems require the same 

bandwidth and have the same throughput. I'sing equation ( 4 )  for a quantum-limited 

system to compute the error-probability for the uncoded system, we see that the coded 

cliiantuin-limited system in (13) is about 2.5 dB superior at an error-probability of 

A siiiiilar cornparison for systems with background noise using the Chernoff bounds in 

equations (8 )  and (15) indicates a gain of about 2.2 dB with coded systems. This gain 

approaches asymptotically for large signal levels the gain achieved by quant um-limited 

sjstems. As a final example, it can be shown that about a 3.5 dB gain over uncoded 

binary PPM can be achieved with the late 2/3 code whose trellis is shown in figure 6. In 

this case no parallel transitions are necessary. 

12 



For the 8-state code of figure 8, about an extra 1 dB gain is achieved over uncoded 

systems. 

Before we end this section, we briefly describe the decoder for completeness. 

D. Decoding of Coded OPPM 

The sufficient statistic for symbol decisions for bot.11 the quant.um-limit,ed as well as 

the background noise limited channels is, as noted earlier. the number of counts observed in 

the J subint.ervals corresponding to possible pulse-positions. In the sequel we will denote a 

sequence of L symbols transmitted by the encoder by a set of indexes { j ,  } ?  i = 1,2 ,  - e . , L 

where j ,  E { 1! 2, - * , J } .  For sequence estimation. a maximum-likelihood (ML)  decoder 

maximizes over the set of all possible sequences allovced by the encoder the following 

stati tic 
L 

4-m = 
i = l  

Soft-decision decoding for the trellis codes discussed above is accomplished in two steps 

when parallel transitions exist, as described by Ungerboeck: in the first step the symbol 

wi th  the largest number of counts is found among symbols in parallel transitions. Both the 

s;vmbol and its number of counts are retained. In the second step, the Vit,erbi algorithm 

is used to find the best path in the trellis that niaxiiiiizes ( 1 7 ) .  using as path metric the 

accuiiiulated nuiiiber of counts for each path. Equal counts are resolved arbitrarily. 

IV . C: ONC LU S IO N S 

The performance of both coded and uncoded overlapping PPM systems has been in- 

vestigated for the optical direct-detection channel. To facilitate set partitioning, a simple 

distance metric was derived which was shown to  be valid for the optical channel. Using sim- 

ple trellis codes over an expanded OPPM signal set. i t  was shown that both a throughput 

and a perforiuance gain can be achieved with simple codes and no bandwidth expansion. 

The trellis-codes used where among those introduced by Ungerboeck and are optimal for 

the Gaussian channel and a Euclidean distance metric. Although a perforniance gain was 

obtained using these codes for the optical channel, it is not clear that they are optimal for 
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this channel and the distance met.ric derived herein. 
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FIGURE CAPTIONS 

Figure 1. An Example of OPPM with Q=2, N=3,  J=4. 

Figure 2. [Tncoded Error-Probabi1it.y for OPPM and Q=2 as a Function of Overlap and Pho- 

t,ons,/nat: Quant.um-Limited Case. 

Figure 3. 1-ncoded Error-Probability for OPPM and Q=4 as a Function of Overlap and Pho- 

tonsinat :  Quantum-LiIiiited Case. 

Figure 4. Uncoded Error-Probability for OPPM and Q=2 as a Function of Overlap and Pho- 

tons/nat: Background Noise Case. 

Figure 5 .  Uncoded Error-Probability for OPPM and Q=4 as a Function of Overlap and Pho- 

tons/nat: Background Noise Case. 

Figure 6. Trellis for t,he Four-St,at,e Code. 

Figure 7 .  Set Partitioning of OPPM with Q=2, N=7,  J=8. 

Figure 8. Trellis for Eiglit,-St,ate Code. 
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APPENDIX A 

Derivation of Equat>ioiis (4)-( 6 )  

We first note that the probabilities of making a correct decision given that the first 

or the J - t h  symbol was sent are the same. We call this probability PI. Similarly, the 

probability of making a correct decision. call it Pi,  given that any of the other ( J  - 2 )  

symbols was sent is the same. ITnder these observations, equation (4) is evident. 

Let us coiiipute PI first. -4ssumiiig that symbol 1 was sent, only the slots 1 , 2 , - . . ,  N 

may have non-zero counts. If slot 1 has nonzero counts, ail event that happens with 

probability (1 - e ) ,  then a correct decision is inade with probability one. If slot 1 is 

erased and slot 2 has nonzero counts, which happens with probability e ( 1  - e ) ,  then 

there is 1/2 probability of choosing the right symbol between the two candidates 1 and 2. 

Similarly, if slots 1 and 2 are erased, and 3 is not, which occurs with probability e’( 1 - e) ,  

then there is 1/3 probability of making a correct choice. Applying this reasoning to other 

slots and noting that, if all N slots are erased, ?hen a random choice among the J symbols 

is made. we obtain equation ( 5 ) .  

To compute P2 we use similar arguments as above. 



APPENDIX B 

Derivation of Equat.ion (8) 

The error probability is given by 

\ 

where P ( c / j )  is the probability of error given t,liat symbol j was sent. Assuming pes- 

simist.ically that in the case of equal symbol c0unt.s between the correct, symbol and some 

other symbol a wrong decision is made, we have 

The second inequalit,y above is just.ified by the union bound. Focusing on the probabilities 

on the right,-hand side of (2B)  we have after a little thought 

where N ' ,  and h r ' k  are independent Poisson random variables with means % ( A ,  4 X,)T' 

and %XnT '  respectively and 

Equations ( 3 B )  and ( 4 B )  can be easily derived by noting that between symbols j and k 
there is an overlap of (Ar - l j  - k l )  2 0 and that the symbols become orthogonal (no 

overlap) when lj - ki > &V. 

It follows from ( 3 B )  and ( 4 B )  that, [8] 

where 
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is Marcum‘s Q-function [9]. A final simplification can be made by using a Chernoff bound 

to the probability in (5B) to yield 

Combining equations ( l B ) ,  (2B) ,  (5B)  and (7B)  we obt,ain 

Equation (9B) can be simplified further by noting that. h l k  E {1,2, - e  - ,  A‘} when j # I C .  

Denoting by u(i) the number of times 6 j k  = i ,  it can be shown that 

2 ( J  - i), i = 1)2).*.,(n: - 1) 
( J  - N ) ( J  - N + 1)) i = N .  a ( i )  = 

Substit.ut,ing (10B) in (9B) we obtain equation (8). 
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APPENDIX C 

Validation of t,he Dist.ance Metric 

Here we show t.liat the distance metric b,k is valid also for paths and t,hus it. is a valid 

metric. 

C’onsider a sequence of L symbols in the trellis corresponding to the t.ransmitted 

(correct) path. The  decision statistic for this path is the sum, call i t  t o .  of counts in each 

of the symbol intervals in the path. If we describe the correct path by the sequence of 

symbols ( j l  , j,, - - . . j~ ) where j ,  E { 1 , 2 ,  - - ,  J}, we have 

L 
l o  = N j i  . 

z= I 

Now consider another path through the t,rellis other than the correct path described by 

( k l  . k 2 ,  . - , k~ ) with a decision statistic 1 1 ,  

I=  I 

The probability that an  erroneous decision will be ni de between the above t,wo paths is 

bounded from above by the probability that E o  is less than or equal to E l ,  i.e., 

P(€) 5 P T [ X  (XJZ - -%,) 5 01. (3C) 
, = I  

In general when the two symbols corresponding to counts XI, and .Vk, overlap, the Poisson 

random variables -’VI, and *Yk, are not independent. However. we can write 

where X,, and X k ,  are independent Poisson random variables with means ‘*(A, + A,)T’ 

and +X,Z” respectively. Here E I , k . ,  is the distance between symbols j ,  and E ,  as 

defined in section 111. The iniplications of the above arguments is that we can write 

P ( c )  5 Pr[_Xo 5 XI] where -Yo = vL d l = l  -YJ3 and X I  = rL d l = l  - ~ k ,  are indepen- 

dent Poisson variables with means 
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and 

respectively. 

IJsing the Chernoff bound to further bound P ( c ) ,  we see that this probability is 

Inonof onically non-increasing with the distance between the correct and the incorrect paths 

given by Sf.=, b J z k , .  Thus we have shown that the distance metric defined in section 111. 

is valid also between paths. 
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Figure 1. An Example of OPPM with Q=2, N=3, J = 4 .  
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Figure 2. Uncoded Error-Probability for OPPM and Q=2 as a 
Function of Overlap and Photons/nat: Quantum-Limited 
Case. 
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Figure 3. Uncoded Error-Probability for OPPM and Q=4 as a Function 
of Overlap and Photons/nat: Quantum-Limited Case. 
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Figure 4 .  Uncoded Error-Probability for OPPM and Q=2 as a Function 
of Overlap and Photonslnat: Background Noise Case. 
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Figure 5. Uncoded Error-Probability for OPPM and Q=2 as a Function 
of Overlap and Photons/nat: Background Noise Case. 
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Figure 6. Trellis for the Four-State Code. 
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Figure 7. Set Partitioning of OPPM with Q=2, N=7, J=8. 
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Figure 8. The Trellis for the Eight-State Code. 
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111. ABSTRACTS OF PREVIOI’S REPORTS 

111 this section we include the abstracts of previous reports and papers that briefly 

describe the derived results. Complete versions of these reports and preprints accompany 

this final report. 
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A CASCADED CODING SCHEME FOR ERROR CONTROL 

AND ITS PERFORMANCE .4NALYSIS * 

Shu Lin 
Texas Ah-M tlniversity 

College TX 778.13 

Tadao Kasami, Tohru Fujiwara. Toy00 Takata 
Osaka lrniversity 

Toyonaka. Osaka, Japan 

ABSTRACT 

In this paper, we investigate a coding scheme for error control in data communication 

systems. The scheme is obtained by cascading two error-correcting codes, called the inner 

and outer codes. The error performance of the scheme is analyzed for a binary symmetric 

channel with bit-error rate c < 1/2.  We show that,  if the inner and outer codes are chosen 

properly. extremely high reliability can be attained even for a high channel bit-error rate. 

Various specific example schemes with inner codes ranging from high rates to very low 

rates and Reed-Solomon codes as outer codes are considered, and their error probabilities 

are evaluated. They all provide extremely high reliability even for very high bit-error rates. 

say lo- '  to lo-'. Several example schemes are being considered by NASA for satellite 

and spacecraft down-link error control. 

This research was partially supported by N A S A  Grant No. N.1G 5-778 

31 



-4 CA4SCADED CODING SCHEME FOR ERROR CONTROL 

AND ITS PERFORM.4SCE .AN.4L'k*SIS8 

Tadao Kasami: Tohru Fujiwara, 

and 

Toyoo Takat,a 

Osaka I-niversit,y 

Toyonaka. Osaka. Japan 

Shu Lin 

Department of E.E. 

Texas AkM Vniversity 

College Station: Texas Ti843 

ABSTRACT 

I n  this paper. we investigate a coding scheme for error control in data communication 

systems. The scheme is obtained by cascading two error-correcting codes. called the inner 

and outer codes. The error performance of the scheme is analyzed for a binary symmetric 

chaiinel with bit-error rate e < 1/2 .  We show that. if the inner and outer codes are chosen 

properly. extremely high reliability can be attained even for a high channel bit-error rate. 

Several example schemes with Reed-Solomon codes as outer codes are considered, and their 

error perforiiiance is evaluated. They all provide extremely high reliabilit p. One particular 

example scheme with a shortened triple-error-correcting BCH code as the inner code and 

a Reed-Solomcm code with symbols from G F ( 2 ' )  as the outer code is being considered by 

Y.LzS.4 for satellit e or spacecraft down-link error control. 

________ __ 

* This payer vias partially presented at the 8th Conference on Information Theory 

and Its .Applications. Nara, Japan. December 1985. 

This research is supported by SASA Grants S o .  N X G  -5-407 and NA4G 5-778. * 
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TWO HYBRID ARQ ERROR CONTROL SCHEMES 

FOR NEAR EARTH SATELLITE COMMUNICATIONS * 

Shu Lin 

Departillexit of E.E. 

Texas A & M Universit.y 

College St.at.ion, Texas i7843 

Tadao Kasami 

Faculty of Engineering Science 

Osaka University 

Toyonaka, Osaka, Japan 560 

ABSTRACT 

In this report. two hybrid A R Q  error control schemes are proposed for NASA near 

earth satellite communications. Both schemes are adaptive in nature, and employ cascaded 

codes to  achieve both high reliability and throughput efficiency for high da ta  rate file 

transfer. 

* This work was supported by NASA Grant No. NAG 5-778.  
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ON THE SYNCHRONIZABILITY A N D  DETECTABILITY OF 

RANDOM PPM SEQUENCES * 

Codas 5 .  C;er)rghiades 

Electrical Engineering Depart nient 

Texas AkM Vniversity 

College Stat.ion. TX 778.13 

ABSTRACT 

The problem of synchronization and detection of random pulse-position-modulation 

( PPXI) sequences is investigated under the assumption of perfect slot synchronization. 

hlaxinium-likelihood PPM symbol synchronization and receiver algorithms are derived 

that make decisions based both on soft as well as hard data: these algorithms are seen 

to be easily implementable. We derive bounds on the symbol error probability as well 

as the probability of false synchronization that indicate the existence of a rather severe 

performance floor. whicll can easily be the liniitirig factor i n  the overall system performance. 

The performance floor is inherent in the PPU format and random data and becomes more 

serious as the PPM alphabet size Q is increased. X way to eliminate the performance floor 

is yuggested by inserting "special" PPM s p b o l s  in the random data stream. 

* This work was supported by NASA grant No. NAG 5-778 
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